Behavior Research Methods, Instraments, & Computers
1986, 18 (2), 147-154

A computer simulation of children’s
arithmetic word-problem solving

DENISE DELLAROSA
University of Colorado, Boulder, Colorado

ARITHPRO is a computer simulation of children’s arithmetic word-problem solving behavior.
It is an instantiation of a recently proposed cognitive model of the knowledge and procedures
required to solve such problems. The program solves word problems by (1) comprehending the
story text in which the problem is embedded, (2) comprehending numerical information as sets
of objects, (3) building superstructures from these sets, thereby specifying their logical relations,
and (4) using a counting procedure to derive the answer to the problem. This report describes
ARITHPRO and its architecture and knowledge base. A few comparisons of ARITHPRO’s per-
formance with that of children are also provided.

ARITHPRO is a computer simulation of children’s
arithmetic word-problem solving behavior. It is the third
stage of development in a project aimed at instantiating
the Kintsch and Greeno (1985) model of children’s
problem-solving processes as a viable working program.
ARITHPRO’s first- and second-stage predecessors are
WORDPRO (Fletcher, 1985) and SOLUTION (Del-
larosa, 1985), respectively. The differences among the
three programs lie primarily in the complexity of the
memory structures they construct, the sophistication of
their linguistic knowledge, and the number and types of
problem-solving strategies encoded in their rule bases.

The primary aim of this project was to test the suffi-
ciency of the Kintsch and Greeno model as a viable model
of problem solving, an aim that has been adequately satis-
fied in that all three computerized versions of the model
can in fact solve standard word problems at the approxi-
mate level of a third grade child. The second aim, and
the one to which the present work is specifically ad-
dressed, was to explain regularities in the data gleaned
from children’s solution attempts, particulary frequently
occurring errors. We hoped to produce an explicitly coded
theory of children’s cognitive processing during problem-
solving attempts.

OVERVIEW

Kintsch and Greeno (1985) argued that children’s
problem-solving behaviors result from an interaction of
text comprehension processes and arithmetic problem-
solving strategies. More specifically, this means that the
problem representation constructed by the child during

This work was supported by National Science Foundation Grant
No. BNS-8309075 to Walter Kintsch and James G. Greeno. Reprint
requests should be addressed to: Denise Dellarosa, Department of Psy-
chology, University of Colorado, Boulder, CO 80309. Also available
are the documentation to the program and floppy diskettes containing
the program, its lexicon, and the problems it solves.

147

a solution attempt is a joint product of his or her (1) lin-
guistic sophistication and (2) grasp of logical set relations.
The child’s choice of (3) an arithmetic or other solution
strategy to use in solving the problem is strictly dictated by
the quality of the problem representation. In other words,
a child’s solution strategy is determined by how well he or
she understands the problem described by the text.
These ideas were taken quite literally when designing
the simulation. ARITHPRO’s problem-solving style is
characterized by an interaction of the three components
referred to above. ARITHPRO comprehends the story
described in a word problem by building proposition
frames (van Dijk & Kintsch, 1983). It comprehends
numerical information by building set frames; that is, it
understands numbers as sets of objects. The problem
structure, or more precisely, the logical relations among
the sets created during comprehension, is captured in su-
perschemata which subsume these individual sets. The
particular type of superschema that is built depends upon
the information present in the individual proposition and
set frames. Finally, the presence of a superschema trig-
gers an arithmetic counting procedure appropriate to the
superschema, thereby producing an answer to the
problem. If no superschema, or an incomplete su-
perschema, has been created (i.e., if ARITHPRO did not
“‘understand”’ the problem), then default strategies are
used to produce intelligent guesses about the answer.

ARCHITECTURE:
A MORE DETAILED LOOK

ARITHPRO’s programming architecture includes a lex-
icon, written in LOOPS, and a production system, writ-
ten in INTERLISP. The program runs on a XEROX 1108
“‘Dandelion.”” Embedded in this architecture are the main
components of the psychological model upon which it is
based, namely (1) linguistic comprehension processes,
(2) knowledge concerning sets and their logical relations,
(3) arithmetic counting strategies, (4) default solution

Copyright 1986 Psychonomic Society, Inc.

148 DELLAROSA

strategies, (5) a goal stack, (6) a short-term memory
(STM) buffer, and (7) a long-term memory (LTM). The
main data structures created by ARITHPRO are frames
(Winston & Horn, 1981). A frame constitutes a single unit
in STM. The buffer size of STM is five units.

How It Works

ARITHPRO currently has no parser. It takes as its in-
put a propositionalized problem text, an example of which
is illustrated in Figure 1. To begin a processing cycle,
ARITHPRO loads the first set of propositions (cor-
responding to the first sentence) into STM and sets the
current goal in ‘‘Read.’” A collection of functions then
cycle through the rules contained in the rule base, look-
ing for rules whose conditions are satisfied by the con-
tents of STM and the contents of the goal stack. The first
rule whose conditions are found to be satisfied is fired.
Firing a rule causes memory structures to be created in
STM, changed, or retrieved from LTM, and goals to be
added or deleted from the goal stack. When the size of
STM reaches five units, new incoming units begin to dis-
place old ones. The displacement occurs on a modified
first-in-first-out basis, with set frames being given higher
priority than proposition frames. When no more rules are
satisfied by the contents of STM, STM is purged by trans-
ferring to LTM all units except the most current set and
proposition frames. The next set of propositions is then
loaded into STM and the process begins again. The
processing of a proposition containing the words HOW
MANY changes the goal from ‘‘Read’’ to ‘‘Solve.”” At
this point, propositions can still be processed (i.e., read),
but rules governing solution procedures become availa-
ble for firing (these rules have a ‘‘Solve’’ goal as a
primary condition). Rule firing continues until no more
rule conditions are satisfied, and no more sentences are
left to read. Usually, ARITHPRO has derived an answer
by this point.

A few characteristics of ARITHPRO should be noted.
First, a cycle in this system is counted as in Kintsch and
van Dijk (1978): A new cycle begins when new un-
processed propositions are loaded into STM from the

problem text. Second, no conflict resolution strategies are
employed or needed. The rules are ordered according to
what is believed to be a psychologically valid scheme,
and the first rule to be encountered whose conditions are
satisfied fires. The rule ordering, combined with the goal
stack, has proved to be sufficient to control processing
episodes.

A Closer Look at the Rules and Lexicon

ARITHPRO’s knowledge is encoded in a lexicon and
a rule base, the latter of which is divided into four parts.
These four parts contain rules pertaining to linguistic
knowledge, knowledge about set relations, arithmetic
counting procedures, and default solution strategies. A
brief description of each of these follows.

Linguistic knowledge. ARITHPRO’s linguistic
knowledge is encoded in its lexicon and the first set of
production rules. Together, they represent three types of
linguistic understanding. Knowledge about words and
their meanings is contained in the lexicon. Knowledge
about propositions and their meanings is encoded in
production rules that create proposition frames as
described by van Dijk and Kintsch (1983). Knowledge
about text structure is encoded in rules that create expec-
tations (i.e., goals) concerning incoming propositions and
their relations to propositions already processed.

The lexicon consists of words children are likely to en-
counter in word problems. The words belong to classes
that are arranged in an inheritance hierarchy, subclasses
inheriting properties from superclasses. The lexicon is
depicted in Figure 2. The proposition production rules
are triggered by the presence of words belonging to cer-
tain classes in the lexicon. When triggered, the rules cre-
ate frames out of the propositions containing these words.
The actions of these rules represent activation of
knowledge concerning word meanings and the meanings
of the propositions comprising the words. The general
form of these rules is:

IF This item is a proposition

and the predicate of this proposition is a
certain word type

a

HORTENSE HAS FIVE DIMES.
BUBBLES HAS THREE DIMES.
HOW MANY DIMES DO THEY HAVE ALTOGETHER?

(((P1 (EQUAL X HORTENSE))

(P2 (HAVE X P3))

(P3 (FIVE DIMES)))

((P4 (EQUAL Y BUBBLES))

(PS (HAVE Y P6

(P6 (THREE DIMES)))

((P7 (HOWMANY DIMES))

(P8 (HAVE-ALTOGETHER X&Y P7))))

b

ROLLO HAD FOUR MARBLES.
THEN NORTON GAVE HIM SIX MARBLES.
HOW MANY MARBLES DOES ROLLO HAVE NOW?

(((P1 (EQUAL X ROLLOY)
(P2 (HAVE X P4))

(P3 (PAST P2))

(P4 (FOUR MARBLES)))
((P5 (THEN P2 P7))

(P6 (EQUAL X NORTON))
(P7 (GIVE Y X P9))

(P8 (PAST P7))

(P9 (SIX MARBLES)))
((P10 (HOWMANY MARBLES))
(P11 (HAVE X P10))

(P12 (NOW P11))))

Figure 1. An example of a COMBINE problem (a) and a TRANSFER problem (b), and their propositionalized form.

ARITHMETIC PROBLEM SOLVING 149

Children Girls
Boys
Agents
Women
Adults< o
Arguments
Animals
Money
Objects Toys
Food
Plants
Variables
QuantityWords = Numbers
DecrementWords
) Verbs < IncrementWords
LEXICON RelationTerms PossessionWords
NegationWords Colors
Modifiers DescriptiveAdjectives < Shapes Big
Sizes < Medium
Small
ComparisonWords

Time
Circa < Place
Tense

Figure 2. The hierarchical structure of ARITHPRO’S lexicon. This is an inheritance network in which word classes
inherit attributes from those above them on the hierarchy.

THEN Add to STM a skeletal proposition frame

Bind the predicate to the appropriate
frame slot

Bind the argument(s) to the appropriate
frame slot(s)

Add class membership and any other
meaning information concerning these
words to the appropriate frame slots

Delete the unprocessed proposition from STM

Figure 3 illustrates an unprocessed possessive proposi-
tion taken from Figure 1a and its processed proposition
frame. Note that class membership information is included
in the frame. In addition, whenever a proposition refer-
ences another proposition, as this one does, the two propo-
sition frames are linked together in memory.

The remaining linguistic rules generate goals concern-
ing set specification information and problem structure.
These rules are triggered by the presence of certain types
of proposition frames in STM. For example, when a pos-
sessive proposition frame is encountered, a goal is placed
on the goal stack to bind ownership information to a set
of objects. In other words, whenever ARITHPRO
processes a proposition such as (HAVE X P3), it under-

stands that X possesses something, that the thing that X
possesses will be described shortly, and that it is likely
to be a set of objects, because this is a word problem.
In addition, a goal is added requesting the assignment of
UNKNOWN to the role slot of the set to be encountered.

Some proposition frames carry more information con-
cerning the problem structure than do possessive frames.
For example, when a transfer proposition frame is en-
countered, goals are added to the stack concerning the
assignment of TRANSFERSET to the set objects to be
encountered, the assignment of PriorSet to the set already
in existence, and the need to create a transfer su-
perschema. At this point, ARITHPRO already has a pretty
good handle on what type of problem it is dealing with—
unlike the possessive frame case. This situation is illus-
trated in Figure 4, using P7 from Figure 1b.

Quantity propositions also create special goals.
Whenever a quantity proposition, such as (THREE MAR-
BLES) or (SOME APPLES), is processed by proposition
production rules, not only is a proposition frame con-
structed from that proposition, but a goal to make a new
set is added to the goal stack. The processing of this goal
is described in the next section.

150 DELLAROSA

Unprocessed proposition. (P2 (HAVE X P3))
Processed proposition frame

(P2 (PREDICATE : (HAVE)
(ISA (PossessionWord, Verb,
RelationTerm)))
(ARGUMENT! : (X)
(ISA (Variable, Agent)))
(ARGUMENT?2 : (P3)))

Goal Stack

((BindOwner X P3)
(BindRole UNKNOWN P3)
(Read))

Figure 3. An unprocessed possessive proposition and its processed
proposition frame. Also shown is the goai stack produced by process-
ing this type of proposition.

Knowledge about sets and set relations. The second
group of rules are concerned with building problem struc-
tures. These superschema production rules divide them-
selves into two groups: The first deals with the compre-
hension of quantity words as sets of objects, and the
second deals with the construction of organized problem
structures, or superschemata.

Whenever ARITHPRO processes a quantity proposi-
tion, it creates a goal requesting that a new set be con-
structed. The presence of this goal triggers a rule that cre-
ates a skeletal set frame from the quantity proposition
frame. The form of this rule is:

IF The goal is MAKESET

THEN Add to STM a skeletal set frame
Bind the quantity to the QUANTITY slot
Bind the objects to the OBJECT slot
Pop the goal

At this point, the goal stack usually contains several other
goals concerning the assignment of values to the new set’s
SPECIFICATION slot, these goals having been gener-
ated by the proposition rules, as described above. More
particularly, these specifications may include the set’s
OWNER, ROLE, TIME of existence (e.g., past, present),
and LOCATION. Included in this set of rules are ones
that deal with the assignment of specified values to facets
of the SPECIFICATION slot. Continuing with our two
examples, Figure 5 illustrates the complete sets created
during processing of the first two lines of the TRANS-
FER and the COMBINE problem text from Figure 1.
Notice that in the TRANSFER case, the role of TRANS-
FERSET has been assigned to the role slot of the set
referred to in the transfer proposition frame and the role
of PriorSet has been assigned to the set that was in exis-
tence prior to the transfer of goods. All of these assign-
ments represent the actions of the rules in this group.

ARITHPRO understands four types of structures:
SUPERSET, TRANSFER-IN, TRANSFER-OUT, and
COMPARE. A SUPERSET structure is one in which two
sets are subsets of a third set, as in our COMBINE ex-
ample. A TRANSFER-IN structure is one in which more
objects are added to an already existing set of objects,
as in our TRANSFER example. A TRANSFER-OUT
structure is one in which objects are removed from an
already existing set of objects, as in

Clarissa had four teddy bears.
She gave two of them to Chatworth.
How many teddy bears does Clarissa have now?

Finally, a COMPARE structure is one in which sets are
corppared and the difference in their cardinality noted,
as in

Hortense has twelve records
Theodore has ten records.
How many more records does Hortense have than Theodore?

Each of these four structures is encoded in ARITH-
PRO’s knowledge base as a superschema whose slots must
be filled with sets having certain specifications. Their cre-
ation in STM is triggered by certain proposition frames,
or by the combination of certain proposition frames and
set frames having certain specifications. In our TRANS-
FER example, the following rule would apply:

1IF The goal is MAKE-TRANSFER-SCHEMA
and the owner of the PriorSet is the
patient of the transfer proposition
THEN Make a skeletal TRANSFER-IN superschema frame
in STM
Add a goal to find the TRANSFERSET
Add a goal to find the STARTSET
Add a goal to find the RESULTSET

The existence of a transfer proposition frame, such as that
illustrated in Figure 4, triggers the addition of a goal call-
ing for the creation of a TRANSFER superschema to the
goal stack. This goal, combined with a prior set whose
owner was the patient of the transaction, triggers the cre-
ation of a TRANSFER-IN superschema. (If PriorSet’s
owner had been the agent, a TRANSFER-OUT super-
schema would have been constructed.) New goals call-
ing for the three sets that complete a TRANSFER-IN
schema are added to the goal stack. Two of these—
TRANSFERSET and STARTSET—can be filled immedi-
ately because sets answering the specifications of TRANS-
FERSET and STARTSET currently reside in STM. The
third goal—RESULTSET—is filled once the third line of
the problem is processed, thereby producing a set with
the required specifications. Specification matching and slot

Unprocessed proposition: (P7 (GIVE Y X P9))

Processed proposition frame Goal Stack

(P7 (PREDICATE : (GIVE)
(ISA (TransferWord, Verb,
RelationTerm)))
(ARGUMENT! : ()
(ISA (Variable, Agent))
(ROLE : (Agent))
(ARGUMENT? : (X)
(ISA (Variable, Agent))
(ROLE : (Patient))
(ARGUMENTS3 " (P9)))

((BindOwner X P3)

(BindRole TRANSFERSET P3)
(BindRole PriorSet ExistingSet)
(MakeTransferSchema)

(Read))

Figure 4. An unprocessed transfer proposition and its processed
proposition frame. Also shown is the goal stack produced by process-
ing this type of proposition.

a

(SET1 (QUANTITY : 5)
(OBJECTS : DIME)
(ROLE : UNKNOWN)
(SPECIFICATION
(OWNER : X))

(SET2 (QUANTITY : 3)
(OBIECTS : DIME)
(ROLE : UNKNOWN)
(SPECIFICATION

(OWNER : Y)))

ARITHMETIC PROBLEM SOLVING 151

b

[TransferInSET

(STARTSET
(SET 1 (QUANTITY : 4)
(OBJECTS : MARBLE)
(ROLE :PriorSet)
(SPECIFICATION
(OWNER : X)
(TIME : PAST))))

(TRANSFERSET
(SET2 (QUANTITY : 6)
(OBJECTS : MARBLE)
(ROLE : TransferSet)
(SPECIFICATION
(OWNER : X)
(TIME : PAST, AFTER SET1))))]

Figure 5. The set structures constructed after processing the first two lines of a COMBINE-
type problem (a) and a TRANSFER-type problem (b).

filling are, of course, also handled by superschema
production rules (for more information, see Dellarosa,
1985).

Counting procedure and default rules. The remain-
ing two groups of rules in ARITHPRO’s knowledge base
are procedure rules, which deal with counting strategies
for deriving answers, and default rules, which constitute
best guesses at problem solutions when the frames
ARITHPRO has constructed fit none of its superschemata.
The procedure rules are not described here; the interested
reader is directed to Dellarosa (1985) for more informa-
tion. The default rules fall into two groups. The first deals
with searching STM or LTM for sets with certain specifi-
cations and returning their cardinality as best guesses. The
second deals with mining proposition frames in STM and
LTM for helpful verbal information with which to dis-
ambiguate the set structures. These rules are discussed
more fully in the next section, where illustrative exam-
ples make their purposes and functions clearer.

ARITHPRO’s PERFORMANCE AND
THAT OF CHILDREN

Two questions are addressed in turn: What types of
problems can ARITHPRO solve and what are its limita-
tions? How do ARITHPRO’s problem-solving charac-
teristics compare with those of children?

Capabilities and Limitations

ARITHPRO can reliably solve the 14 problem types
described by Riley, Greeno, and Heller (1983). These fall
into the four categories captured by ARITHPRO’s su-
perschemata. These are the same problems that WORD-
PRO was designed to solve; however, unlike WORDPRO,
ARITHPRO does not operate on a key-word basis, and
hence can tolerate a great deal of variability in the word-
ing of these problems. For example, WORDPRO looks
exclusively for key words such as GIVE or HAVE-
MORE-THAN in solving problems. Because ARITHPRO
deals with word classes, any transfer word or compari-
son word will produce the same problem-solving se-
quences.

In addition to these 14 problem types, ARITHPRO can
solve problems that its predecessors could not. Table 1
contains three examples of such problems. In the first,
ARITHPRO creates a SUPERSET structure, operating
on the premise that the least specified of three sets whose
specification slots overlap is the superset. Thus, the third
set must be the superset: all three sets have matching ob-
jects (WINDOWS) and are located in the same place
(HALL), but the third set does not have a size specifica-
tion and the other two do. Importantly, the disparate in-
formation in a specification slot must indicate disjoint-
ness between the two subset candidates. For example, if
the second line of the problem stated ‘‘and four ROUND
windows in the hall,”” ARITHPRO would not attempt to
solve this as a SUPERSET problem because the first two
sets, although both subsets of the third, are not disjoint.
There could be big, round windows.

The remaining two problems also describe SUPERSET
problem structures. In Problem 2, a conjunction rule is
used to determine the superset. This rule states that if one
set specifies a conjunction of some aspect of the other two
sets (in this case OBJECTS), then the conjunction set must
be the superset and the other two subsets. Problem 3
describes a case in which a lexicon is used to determine
the superset. In this case, DOLLS and TEDDY BEARS
are both members of the class TOYS. ARITHPRO uses
superclass-subclass and class-instance information from
its lexicon to identify which of the three sets is the
superset.

Table 1
Three Sparsely Worded Problem Types that ARTTHPRO Can Solve

1 There are three large windows and

four small windows in the hall.

How many windows are there in the hall?
2. There are four dolls and

three teddy bears on the shelf.

How many dolls and teddy bears are there on the shelf?
3. There are four dolls and

three teddy bears on the shelf.

How many toys are there on the shelf?

152 DELLAROSA

Comparison with Children’s Performance

ARITHPRO, like its predecessors, is designed to simu-
late optimal performance on word problems. Its rules cap-
ture empirically observed performance characteristics of
children who successfully solved the various problems.
However, children are not always successful at solving
problems—they make mistakes. Moreover, there is a great
deal of regularity among the errors children commit, and
these characteristic errors tend to decrease as children
grow older (Riley et al., 1983). In comparing ARITH-
PRO’s performance with that of children, we have chosen
to focus on the errors children commit and the modifica-
tions required to simulate these errors.

This decision was motivated by the following fact: A
tension exists in the literature between theorists who be-
lieve that developmental changes in performance are due
to knowledge acquisition or maturation in reasoning
powers and those who believe that such changes in per-
formance are due to improved linguistic skills on the part
of the child. The former camp includes Piagetian
researchers whose view is based on empirical observa-
tions of developmental differences in performance on
carefully chosen tasks. Their argument is that if children
under a certain age typically fail at a task that requires
certain knowledge to perform—such as a conversation
task—then the children who fail do not yet possess the
requisite knowledge for that task. Researchers in the se-
cond camp base their view on studies in which minor
wording changes in task instructions have produced dra-
matic performance improvements in children who typi-
cally failed the task under standard conditions (e.g., Hud-
son, 1983; Markman, 1979). Their argument is that
children may possess the requisite knowledge to perform
a task, but may misinterpret or misunderstand the com-
plex linguistic utterances used by adults to describe the
task, and hence fail to perform it correctly.

Simulations such as ARITHPRO provide a useful means
of exploring this controversy. Unlike children, ARITH-
PRO’s knowledge can be deleted, changed, or added at
will, and the effects of these changes on performance
noted. In particular, the different effects of deleting or
changing linguistic and mathematical knowledge can be
easily compared.

In taking this approach, our initial question has been:
How many characteristic errors can ARITHPRO be in-
duced to commit simply by manipulating its linguistic
knowledge and/or input? We are particularly interested
in how far this linguistic approach can be taken before
it becomes necessary to begin removing mathematical/set
knowledge in order to produce the errors that children
make. We have just begun this approach, and the results
are thus far encouraging.

A particularly hard problem type for children to solve
is one involving the word some, as in

Rufus had some marbles.

Then Gertrude gave him eight more marbles.

Now Rufus has thirteen marbles. o
How many marbles did Rufus have in the beginning?

The most frequently committed error on this type of
problem is to give as the answer the cardinal of the trans-
fer set, in this case eight. It has been suggested that this
error is caused by a failure on the part of the child to un-
derstand that things can be undone or done backward in
time (Briars & Larkin, 1984). This view, therefore, sug-
gests that young children lack a type of knowledge con-
cerning manipulation of objects in time. However, we sug-
gest that the clue lies in the way children interpret the word
some. Riley et al. (1983) noted that, when using blocks
to model story problems, children often were at a loss
as to how to model some. Often they simply ignored the
entire sentence containing this word in their solution at-
tempts. To simulate this situation, we ran ARITHPRO
twice on this problem, with some entered once as a mem-
ber of the quantity word class and once as a modifier.
The output from both of these trials is depicted in
Figure 6. When ARITHPRO understood some as a quan-
tity word, it built the correct TRANSFER-IN structure
with the STARTSET cardinal as the goal, as shown in
Figure 6a. When ARITHPRO understood some as a modi-
fier, however, it did not build a TRANSFER-IN struc-
ture, but instead ended up with three individual sets, as
depicted in Figure 6b. To understand why this happened,
recall that the construction of a TRANSFER-IN structure
requires the existence of a transfer proposition frame and
a prior set whose owner is the patient of the transfer
proposition frame. Because some was not recognized as
a quantity word, ARITHPRO did not build a set to
represent it. The second line of the problem specified a
TRANSFERSET, but because no prior set existed, the
TRANSFER-IN rule did not fire. Finally, the third set,
specified by HOWMANY, was constructed, but still no
superstructure information was encountered in the
problem text. Because none of its standard rules applied
to this memory configuration, ARITHPRO resorted to its
default rules in an attempt to solve the problem. Several
of these rules involve mining the text-base proposition
frames for a clue or key word that will help solve the
problem. In this case, ARITHPRO found the proposition
frame containing BEGINNING and interpreted this as
“RETURN THE CARDINAL OF THE FIRST SET
CREATED.”" This is, of course, SET1, the TRANS-
FERSET.

Another notoriously difficult problem for children to
solve involves a comparison, as in

Larry has seven oranges.
He has three more oranges than Jeff.
How many oranges does Jeff have?

The most typical error committed on this type of problem
is to give as the answer the cardinal of the difference set,
in this case three. The source of this error is not known.
What is known, however, is that children have enormous
difficulty with the comparative linguistic form (e.g., have
more than, have less than), and interpret it in a variety
of ways. To simulate this situation, we ran ARITHPRO
with two different parsings of the second sentence. In the

a

[TransferInSET
(STARTSET
(SET1 (QUANTITY : GOAL)
(OBJECTS : MARBLES)
(ROLE :PriorSet)
(SPECIFICATON
(OWNER : X)
(TIME : PAST))))

(TRANSFERSET
(SET2 (QUANTITY : 8)
(OBJECTS : MARBLES)
(ROLE : TransferSet)
(SPECIFICATION
(OWNER : X)
(TIME : (PAST,
AFTER SET1))))

(RESULTSET
(SET3 (QUANTITY : 13)
(OBJECTS : MARBLES)
(ROLE : ResultSet)
(SPECIFICATION
(OWNER : X)
(TIME : PRESENT)))]

ARITHMETIC PROBLEM SOLVING 153

b

(SET1 (QUANTITY : 8)
(OBJECTS : MARBLES)
(ROLE ; TransferSET)
(SPECIFICATON
(OWNER : X)
(TIME : (PAST, AFTER NIL))))
SET2 (QUANTITY : 13)
(OBJECTS : MARBLES)
(ROLE : ResultSet)
(SPECIFICATION

(OWNER : X)

(TIME : PRESENT)))
(SET3 (QUANTITY : UNKNOWN)
(OBJECTS : MARBLES)
(ROLE : UNKNOWN)
(SPECIFICATION

(OWNER : X)

(TIME : (PAST, BEGINNINGY))))

Figure 6. The set structures constructed from a TRANSFER problem when SOME is classified as

a quantity word (a) and as a modifier (b).

first (correct) case, the second line was parsed as
(P4 (EQUAL Y JEFF))

(PS (HAVE-MORE-THAN X Y P6))
(P6 (THREE ORANGES))

In the second (incorrect) case, the second line was parsed
as

(P4 (EQUAL Y JEFF))

(P5 (HAVE Y P7))

(P6 (MORE-THAN P3 P7))

(P7 (THREE ORANGES))

In the second case, the problem states that JEFF has three
oranges, and the seven oranges is MORE-THAN three
oranges. The MORE-THAN is just a bit more informa-
tion about the relation between the cardinal; it is no longer
a specification of the difference set in the problem. Note
also that the ownership of this set is incorrect. The
problem states that LARRY owns the second set, but the
owner here is specified as JEFF.

The output from the two cases is illustrated in Figure 7.
In the first case, ARITHPRO encountered the compari-
son proposition and built a comparison proposition frame.
This triggered a goal to build a COMPARE superschema.
The three sets were then assigned to the appropriate slots,
and the problem was solved using a matching procedure.
This is depicted in Figure 7a. In the second case
(Figure 7b), however, ARITHPRO built the three sets
specified in the problem but did not build a COMPARE
superschema, because the MORE-THAN proposition was
treated as a description of a comparison between two
cardinalities, and not as a carrier of information about the
degree of difference between the two sets. Once again,

because no superschemata were built, ARITHPRO had
to resort to its default rules to try to solve the problem.
In this case, no key word or other type of information
was present to disambiguate the situation. Another rule
did apply, however, one that instigated a search of the
set structures to determine whether the requested infor-
mation was already known. Note that the last line of the
problem requests the cardinal of the set owned by JEFF.
This information was present in STM, and it was returned
as the answer. This was the cardinal of the difference set.

In both of these situations, ARITHPRO possessed the
set/mathematical knowledge required to solve the
problem, but that knowledge was not activated due to
faulty linguistic information. In these cases, therefore, it
was not necessary to remove set/mathematical knowledge
to produce characteristic errors. Investigation of other er-
ror types is currently under way.

Finally, we have also begun to use ARITHPRO’s out-
put to make predictions concerning memory for verbal
aspects of the text. The first prediction concerns the recall-
ability of existential propositions that contain the names
of the actors in the story. Unlike most of the other propo-
sitions, existential propositions that contain name infor-
mation are not referenced by—and hence not linked to—
any other proposition in the text. Moreover, because these
are typically the first propositions processed, they are also
more likely to be displaced by new incoming propositions
and consequently lost from STM before the end of a cy-
cle. Both of these characteristics suggest that names should
be particularly difficult for children to recall from story.
This is precisely the case. Children have been found to
rapidly forget the names of the characters in story

154 DELLAROSA

a

{CompareSET
(LARGESET
(SET1 (QUANTITY : 7)
(OBJECTS : ORANGES)
(ROLE : UNKNOWN)
(SPECIFICATION
(OWNER : X)

(DIFFERENCESET
(SET2 (QUANTITY : 3)
(OBJECTS : ORANGES)
(ROLE : DifferenceSet)
(SPECIFICATION
(OWNER . X))

(SMALLSET
(SET3 (QUANTITY : GOAL)
(OBJECTS : ORANGES)
(ROLE : UNKNOWN)
(SPECIFICATION
(OWNER : X))l

b

(SET1 (QUANTITY : 7)
(OBJECTS ORANGES)
(ROLE - UNKNOWN)
(SPECIFICATION

(OWNER : X)

(SET2 (QUANTITY : 3)
(OBJECTS * ORANGES)
(ROLE : UNKNOWN)
(SPECIFICATION

(OWNER . X))

(SET3 (QUANTITY : GOAL)
(OBJECTS : ORANGES)
(ROLE : UNKNOWN)
(SPECIFICATION

(OWNER - X))

Figure 7. The set structures from two parsings of a difficult COMPARE problem. See text for details.

problems, even when their memory for the rest of the
problem text is quite good (Dellarosa, Weimer, &
Kintsch, 1985).

The second prediction concerns recallability of text-base
propositions in general. Because superschemata and set
structures are given higher priority than text-base frames
during STM displacement, recall following a solution at-
tempt should be lower than it would otherwise be, and
recall of difficult, resource-demanding problems follow-
ing a solution attempt should be strongly influenced by
the schemata built, because most of the text base will have
been lost or written to LTM during the attempt and may
be difficult or impossible to retrieve. Both of these predic-
tions were confirmed by Dellarosa et al. (1985). Problem
recall tended to be lower following a solution attempt than
under simple recall conditions, and this was particularly
true of difficult problems. Moreover, recall of difficult
problems seemed to be more a matter of reconstruction
than of recall. For example, the superstructures built from
an easy compare and a difficult compare problem are iden-
tical, but the text base differs dramatically. The compara-
ble Compare-EASY problem for the above Compare-
HARD problem would have as its second line

Jeff has three fewer oranges than Larry.

Note that this has the same problem structure as Compare-
HARD, but with different wording. Dellarosa et al. (1985)
found that children tended to find Compare-HARD sig-
nificantly more difficult to solve than Compare-EASY,
but if they had solved it correctly they were just as likely
to recall the problem as Compare-EASY as Compare-
HARD. In other words, they were equally likely to recall
the second line as ‘‘Jeff has three fewer oranges than
Larry”’ or as ‘‘He has three more oranges than Jeff,’” even
though they had heard the latter and not the former. The

authors interpreted this indifference to the text base as
an indication that children were reconstructing the story
from the problem structures they had built, and were sim-
ply guessing at the verbal structure of the second line,
knowing that both forms were used in the stimulus
materials. Moreover, this indifference was noted almost
exclusively following a solution attempt; in the recall-only
condition, the recalled verbal structure was far more likely
to mirror the structure actually heard.

REFERENCES

BRIARS, D. J., &« LARkIN,] H. (1984). An integrated model of skill
in solving elementary word problems. Cognition & Instruction, 1,
245-296.

DELLAROSA, D. (1985). Solution: A computer simulation of children’s
arithmetic word-problem solving (Tech Rep. No. 148). Boulder.
University of Colorado, Institute of Cognitive Science.

DELLAROSA, D.. WEIMER, R., & KiNTscH, W. (1985). Children’s recall
of anithmetic word problems (Tech. Rep No. 148). Boulder: Univer-
sity of Colorado, Institute of Cogmtive Science.

FLETCHER, C. R. (1985). Understanding and solving arithmetic word
problems: A computer simulation. Behavior Research Methods, In-
struments, & Computers, 17, 565-571

HupsoN, T. (1983). Correspondences and numerical differences be-
tween disjoint sets. Child Development, 54, 85-90.

KINTSCH, W., & GREENO,] G. (1985). Understanding and solving word
arithmetic problems. Psychological Review, 92, 109-129.

KINTSCH, W., & VAN Duk, T. (1978). Toward a model of text com-
prehension and production Psychological Review, 85, 363-394.

MaRrkMAN, E. M. (1979) Classes and collections: Conceptual organi-
zation and numerical abilities. Cognitive Psychology, 11, 395-411.

RILEY, M. S., GreeNo,] G., & HELLER, J. 1. (1983). Development
of children’s problem-solving ability in arithmetic. In H. Ginsberg
(Ed.), The development of mathematical thinking. New York: Aca-
demic Press.

vaN Dk, T., & KINTSCH, W. (1983). Strategies of discourse compre-
hension. New York: Academic Press.

WINSTON, P. H., & Horn, B. K. P. (1981). LISP. Reading, MA:
Addison-Wesley.

